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COVID-19 Artificial Intelligence Diagnosis using only Cough Recordings

• 98.5% sensitivity - 94.2% specificity 
on PCR/serology confirmed subjects

• 100% Asymptomatic detection rate

AI Discrimination Model Performance

Use-Cases
Non-invasive

Essentially free

Unlimited throughput

Real-time results

Longitudinally monitor

COVID-19 Cough Test

Daily Country-Wide Screening

Outbreak Monitoring

Test Pooling Candidate Selection

Visual Summary: The AI model architecture shown enables a non-invasive, real-time solution for an unlimited 
throughput daily country-wide screening, outbreak monitoring, and viral/serology test pooling candidate selection at 
essentially no cost. As shown on the ROC curve, the model discriminates officially tested COVID-19 subjects 97.1% 
accurately with 98.5% sensitivity and 94.2% specificity, with a 100% asymptomatic detection rate and 88% accuracy 
on all subjects. These results are based on a dataset of 5320 subjects. 
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Abstract— Goal: We hypothesized that COVID-19 subjects, 

especially including asymptomatics, could be accurately 
discriminated only from a forced-cough cell phone recording using 
Artificial Intelligence. To train our MIT Open Voice model we 
built a data collection pipeline of COVID-19 cough recordings 
through our website (opensigma.mit.edu) between April and May 
2020 and created the largest audio COVID-19 cough balanced 
dataset reported to date with 5,320 subjects.  

Methods: We developed an AI speech processing framework 
that leverages acoustic biomarker feature extractors to pre-screen 
for COVID-19 from cough recordings, and provide a personalized 
patient saliency map to longitudinally monitor patients in real-
time, non-invasively, and at essentially zero variable cost. Cough 
recordings are transformed with Mel Frequency Cepstral 
Coefficient and inputted into a Convolutional Neural Network 
(CNN) based architecture made up of one Poisson biomarker layer 
and 3 pre-trained ResNet50's in parallel, outputting a binary pre-
screening diagnostic. Our CNN-based models have been trained 
on 4256 subjects and tested on the remaining 1064 subjects of our 
dataset. Transfer learning was used to learn biomarker features 
on larger datasets, previously successfully tested in our Lab on 
Alzheimer's, which significantly improves the COVID-19 
discrimination accuracy of our architecture.  

Results: When validated with subjects diagnosed using an 
official test, the model achieves COVID-19 sensitivity of 98.5% 
with a specificity of 94.2% (AUC: 0.97). For asymptomatic 
subjects it achieves sensitivity of 100% with a specificity of 83.2%. 

Conclusions: AI techniques can produce a free, non-invasive, 
real-time, any-time, instantly distributable, large-scale COVID-19 
asymptomatic screening tool to augment current approaches in 
containing the spread of COVID-19. Practical use cases could be 
for daily screening of students, workers, and public as schools, 
jobs, and transport reopen, or for pool testing to quickly alert of 
outbreaks in groups. 
 

Index Terms—AI Diagnostics, Convolutional Neural Networks, 
COVID-19 Screening, Deep Learning, Speech Recognition 
 

Impact Statement— We present the dataset, model 
architecture and performance of a zero-cost, rapid and instantly 
distributable COVID-19 forced-cough recording AI pre-screening 
tool achieving 98.5% accuracy, including 100% asymptomatic 
detection rate. 
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I. INTRODUCTION 
TRICT social measures in combination with existing tests 
and consequently dramatic economic costs, have proven 

sufficient to significantly reduce pandemic numbers, but not to 
the extent of extinguishing the virus. In fact, across the world, 
outbreaks are threatening a second wave, which in the Spanish 
flu was way more damaging than the first one [1]. These 
outbreaks are very hard to contain with current testing 
approaches unless region-wide confinement measures are 
sustained. This is partly because of the limitations of current 
viral and serology tests and the lack of complementary pre-
screening methods to efficiently select who should be tested. 
They are expensive making the cost of testing a whole country 
each day impossible, e.g. $8.6B for the US population alone 
assuming a $23 test [2]. And to be effective, they often require 
subjects remain isolated for a few days until the result is 
obtained. In contrast, our AI pre-screening tool could test the 
whole world on a daily, or even hourly basis at essentially no 
cost. In terms of capacity, in the week leading up to July 13, 
2020, daily diagnostic testing capacity in the United States was 
fluctuating between 520,000 and 823,000 tests. However, 
certain experts forecasted the need for 5 million tests per day by 
June, increasing to 20 million tests per day by July [3]. The 
unlimited throughput and real-time diagnostic of our tool could 
help intelligently prioritize who should be tested, especially 
when applied to asymptomatic patients. In terms of accuracy, 
in an evaluation of nine commercially available COVID-19 
serology tests, in early phase (7-13 days after onset of disease 
symptoms) sensitivities vary between 40-86% and AUC vary 
between 0.88-0.97[4]. Meanwhile, our tool with AUC 0.97 
achieves 98.5% sensitivity. 

It has been proposed optimal region-wide daily testing and 
contact tracing could be a close substitute to region-wide 
confinement in terms of stopping the spread of the virus [5] and 
avoid the costs of stopping the economy. However, many 
current attempts at testing, contact tracing, and isolation like the 
UK initially employed, have been far from successful [6]. This 
is mainly caused by many countries lacking the tools at the time 
to  employ  an  agile,  responsive,  and  affordable  coordinated 
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public health strategy [6]. Therefore, as the virus spreads to 
countries who cannot afford country-wide daily testing nor 
confinement, a large-scale, low-cost, and accurate pre-
screening tool may be essential to prioritize tests for rapidly 
detecting and locally preventing outbreaks. Different AI 
approaches have recently been proposed to support the 
management of the pandemic [7, 8, 9, 10]. 

An AI coughing test would provide some advantage that may 
partially offset the issues with existing biological testing 
approaches. Capabilities of our AI tests include: non-invasive 
real-time results, essentially zero variable cost, accessible by 
anyone, and capable to longitudinally monitor patients. 

As any AI deep learning approach, we needed training data 
and a modelling strategy. To address the data component, which 
was not available, we initiated a worldwide crowd-sourced 
effort to collect COVID-19 forced-cough audios along with 10 
multiple choice questions related to the diagnosis of the disease 
and relevant symptoms as shown in Table 1. Our MIT Open 
Voice COVID-19 Cough dataset [10] sets a new benchmark as 
the largest audio health dataset with several hundred thousand 
coughs of which 5,320 COVID-19 positive and negative 
balanced subjects were selected for this research. We selected 
all COVID-19 positives and, randomly, an equivalent number 
of negative ones from the rest of our dataset. 

To address the modelling strategy, we were inspired by our 
research on Alzheimer’s[11] and the growing evidence of 
recently reported symptoms of COVID-19 patients who 
suffered neurological impairments such as temporary 
neuromuscular impairment and loss of smell during and post 
infection[12][13][14].  

After trying unsuccessfully a few basic CNN models, the 
connection between COVID-19 and the brain is what led us to 
pivot the COVID-19 modelling efforts to our Open Voice Brain 
Model framework (OVBM), based on the Brain Model of the 
MIT Center for Brain Minds and Machine [15], since we had 
recently applied it to the diagnostic of Alzheimer’s achieving 
above state-of-the-art accuracy of 93.8%. Our MIT OVBM 
framework identifies acoustic biomarkers to diagnose and 
create an individualized patient saliency map to longitudinally 
monitor patients[11].  

In the following sections we present the data collection 
pipeline for this study (section II.1), an overview of our 
COVID19 AI model (section II.2), the four biomarkers (section 
II.3) and the results (section III), including our model 
performance on pre-screening COVID-19 subjects, followed by 
an evaluation of the biomarkers and our individualized patient 
longitudinal saliency map. We conclude in sections IV and V 
with a brief summary, limitations, and implications on 
suggested next steps for the deployment in practice of our 
COVID-19 pre-screening tool, suggesting a pooling strategy, 
and, more broadly, implications of our approach for the role of 
AI in Medicine going forward.  
 
 
 
 
 

 
 

II. METHODS  
II.1. COVID-19 Cough Dataset  
 

Approved by the MIT COHUES Institutional Review Board, 
in April 2020 we initiated a worldwide cough data collection 
effort of through our website recording engine 
(opensigma.mit.edu) with the aim of creating the MIT Open 
Voice dataset for COVID-19 cough discrimination [10]. We 
collected variable length cough audio recordings (on average 3 
coughs per subject) accompanied by a set of 10 multiple choice 
questions related to the diagnosis of the disease and general 
subject information: age, sex, country, region; whether, when 
and outcome of medical diagnosis done and whether the source 
of diagnosis was an official test, a doctor’s evaluation or a 
personal assessment; and finally information about symptoms 
and days since their onset. Symptoms requested included fever, 
tiredness, sore throat, difficulty breathing, persistent pain or 
pressure in the chest, diarrhoea and coughing.  

So far, we have an estimated subject count of 2,660 COVID-
19 positives and a 1-10 ratio of positive to control subjects. 
Recording was available on various browsers and devices, 
reducing any possible device specific bias. Data was 
anonymized before being collected on our secure server and 
samples were saved without compression in WAV format 

 
 
Table 1. The selection for the COVID-19 subjects for performance comparison 
aimed to reproduce a scenario where subjects are requested to voluntarily use a 
screening tool. That is why the ratio is not exactly balanced in terms of any 
specific demographic statistic. Instead, we chose the split to reflect the voluntary 
participation in our crowd-sourcing exercise, which in the case of COVID-19 
positives was 41.8% male, 53.0% female and 8.9% other because that was the 
ratio of voluntary participants. Note the ratio of control patients included a 6.2% 
more females, possibly eliciting the fact that male subjects are less likely to 
volunteer when positive. Thus, the percentages reflect our sample and therefore 
produce what we feel is the best estimate of overall performance if a screening 
tool was voluntarily used at scale. In any case, our extensive database allows 
selective training for other demographics. Note the ‘Hit’ column shows the 
model accuracy on each respective subgroup. The categories personal, doctor 
and official correspond to the source of diagnostic entered by each subject, 
whether they took an official test, had a doctor’s diagnosis, or simply a personal 
assessment. 
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(16kbs bit-rate, single channel, opus codec). Samples that had 
no audio content (e.g. where the file was 44 bytes) were 
removed. No segmentation was performed on the cough 
recordings used to train and test.  

We used all the COVID-19 positive samples in our dataset 
and randomly selected the same number of COVID-19 negative 
subjects for a balanced distribution. We only used samples with 
two conditions, first a diagnostic had been done in the last 7 
days and, second, with symptoms onset no longer than 20 days 
and where symptoms continued until the sample was captured. 
The subject forced-cough audios and diagnostic results were 
used to train and validate the COVID-19 discriminator. 4256 
subjects (80%) were used for training and 1064 (20%) for 
validation. Table 1 provides more details on the patient 
distribution for the randomly sampled patients selected from the 
dataset. 

 
II.2. Overview of the COVID-19 model architecture 
 

Our proposed architecture, drawn in Fig. 1, takes a recording 
with one or more coughs, performs two pre-processing steps 
with the recording and inputs it into a CNN based model to 
output a pre-screening diagnostic along with a biomarker 
saliency map (e.g. in Fig. 3c).  

As pre-processing, each input cough recording is split into 6 
second audio chunks, padded as needed, processed with the 
MFCC package [16] and subsequently passed through 
biomarker 1. The output of these steps becomes the input to a 
CNN as described in the next paragraph.  

The CNN architecture is made up of three ResNet50s in 
parallel. The 7 × 7 × 2048 4-d tensor output layer of each 
ResNet50 model is concatenated in parallel as depicted in Fig. 
1. In the baseline models, these ResNet50s are not pre-trained. 
In the best performing model, they are pre-trained to capture 
acoustic features on biomarkers 2,3 and 4 as described in 
section 2.3. The output of these three concatenated tensors is 
then pooled together using a Global Average Pooling 2D layer, 
followed by a 1024 neuron deeply connected neural network 
layer (dense) with ReLU activation, and finally a binary dense 
layer with sigmoid activation. The whole architecture is trained 
on the COVID-19 cough dataset for binary classification. The 
various chunk outputs from the CNN architecture are 

aggregated using competing schemes to generate the subject’s 
saliency map as illustrated in Fig. 3.c. The results of this paper 
and presented in Table 1 are based solely on the first audio 
chunk outputs. Future work may show that aggregation can not 
only improve explainability but also increase diagnostic 
accuracy. 
 
II.3. COVID-19 Model Biomarkers 
 

The MIT Open Voice architecture uses four biomarkers we 
previously tested for the detection of Alzheimer’s, inspired by 
medical community choices [17] [18][19][20][21]: muscular 
degradation, changes in vocal cords, changes in 
sentiment/mood, and changes in the lungs and respiratory tract. 

 
Biomarker 1 (Muscular Degradation): 

 
Following memory decay models from [22] [23] we 

introduced muscle fatigue and degradation features by 
modifying input signals for all train and test sets with the 
Poisson mask in Equation 1. Poisson decay is a commonly 
occurring distribution in nature [24] which has previously been 
proposed to model muscular degradation. We find it effective 
since removing this biomarker roughly doubles the error rate in 
official predictions. To capture the influence of muscular 
degradation in individual predictions, we developed a muscular 
degradation metric based on comparing the output with and 
without this initial Poisson step. This metric is the normalized 
ratio of the prediction with and without the mask and it is 
incorporated in the saliency map as illustrated in Fig. 3. For 
COVID negatives this metric is plotted directly; and for 
positives we plot one minus this metric.  

The Poisson mask applied on a cough recording MFCC 
point, Ix, is calculated by multiplying this value by a random 
Poisson distribution of parameters Ix and λ, where λ is the 
average of all values in the MFCC. 

 

 
 
Biomarker 2 (Vocal cords):  
 

Subjects with lung diseases often have distinct expressions 
of vocal cords biomarkers as compared to healthy ones [25]. 
For example, studies have reported phonation threshold 
pressure, the minimal lung pressure necessary to start and hold 
vocal fold oscillation, correlates to vocal fatigue [26]. 
Therefore, we were interested in creating a vocal cord 
biomarker model capable of detecting changes in basic features 
of vocal cord sounds in continuous speech.  

We focused on developing a Wake Word model [27] for a 
very universal sound ”mmmmmm”. We trained a ResNet50 
[28] with input shape (300, 200) from MFCC to discriminate 
the word ’Them’ from others using LibriSpeech, an audiobook 

 
 
Fig. 1.  Overview architecture of the COVID-19 discriminator with cough 
recordings as input, and COVID-19 diagnosis and longitudinal saliency map 
as output. 
  

(1) 
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dataset with ≈1,000 hours of speech [29]. The model was 
trained by creating a balanced sample set of 11,000 two-second 
audio chunks, half containing the word and half without it, and 
achieved a validation accuracy of 89%.  

We found that the learned features from this biomarker 
enable the detection of variations in the vocal cords that exist 
between COVID-19 and control subjects, discriminating 54% 
of the test set. As shown in Table 2, for 19% of the subjects, 
this is the only biomarker to correctly discriminate them. 

 
Biomarker 3 (Sentiment):  
 
Studies [14] show a cognitive decline in COVID-19 patients 
and clinical evidence supports the importance of sentiments in 
the early-diagnosis of neurodegenerative decline [19, 30]. 
Different clinical settings emphasize different sentiments, such 
as doubt [31] or frustration [31] as possible neurodegenerative 
indicators. To obtain a biomarker that detects this decline, we 
trained a Sentiment Speech classifier model to learn sentiment 
features on the RAVDESS speech dataset [32], which includes 
actors intonating in 8 emotional states: neutral, calm, happy, 
sad, angry, fearful, disgust, and surprised. A ResNet50 [28] was 
trained on 3 second samples for categorical classification of the 
8 intonations with input shape (300, 200) from MFCC which 
achieved 71% validation accuracy. 
 
Biomarker 4 (Lungs and Respiratory Tract):  
 

The human cough has already been demonstrated to be 
helpful in diagnosing several diseases using automated audio 
recognition [33][34]. The physical structure of the lungs and 
respiratory tract get altered with respiratory infections, and in 
the early days of the COVID-19, epidemiologists listened to the 
lungs while patients forced coughs as part of their diagnostic 
methods. There is evidence that many other diseases may be 
diagnosed using AI on forced-coughs. An algorithm presented 
by [35] uses audio recognition to analyse coughs for the 
automated diagnosis of Pertussis - a contagious respiratory 
disease that if left untreated can be fatal. Algorithms based on 
cough sounds collected using smartphone devices are already 
diagnosing pneumonia, asthma and other diseases with high 
levels of accuracy [36][37] [38][39]. Therefore, a biomarker 
model capable of capturing features on the lungs and respiratory 
tract was selected.  

Past models we created with a superset of the cough dataset 
collected through MIT Open Voice for COVID-19 detection 
[10] accurately predicted a person’s gender and mother tongue 
based on one cough. We hypothesized that such models capable 
of learning features and acoustic variations on forced coughs 
trained to differentiate mother tongue could enhance COVID-
19 detection using transfer learning. We stripped from the 
dataset all metadata but the spoken language of the person 
coughing (English, Spanish), and split audios into 6s chunks. A 
ResNet50[28] was trained on binary classification of English vs 
Spanish with input shape (600, 200) from MFCC and 86% 
accuracy. We found that the cough biomarker is the one that 
provides the most relevant features with 23% unique detection 
and 58% overall detection as shown in Table 2. 

III. RESULTS  
III.1. COVID-19 forced-cough discrimination accuracy  
 

Our model achieves a 97.1% discrimination accuracy on 
subjects diagnosed with an official test. The fact that our model 
discriminates officially tested subjects 18% better than self-
diagnosed, as shown in Table 1, is consistent with this 
discrepancy being caused by self-diagnostic errors. These 
errors can contribute to the expansion of the virus even if 
subjects are well intentioned, and our tool could help diminish 
this impact. To that end, it is remarkable that our tool 
discriminates 100% of asymptomatics at the expense of a false 
positive rate of 16.8%. Note the tool sensitivity/specificity can 
be tailored depending on the use case, such as reducing this 
false positive rate at the cost of more false negatives, as shown 
in Figure 2.  

 
III.2. Biomarker Saliency Evaluation 
 

To measure the role of each biomarker in the discrimination 
task, we compared the results between a baseline model and the 
complete model with and without each biomarker. The baseline 
model is defined as the same architecture shown in Fig. 1 
trained on COVID-19 discrimination as in our model but 
without the pre-trained biomarker model features. Therefore, 
the baseline model has the exact same number of neurons and 
weights but is initialized randomly instead of with pre-trained 
models. From Fig. 3a, the lungs and respiratory track biomarker 
model requires very few layers to be fine-tuned to COVID-19 
discrimination to beat the baseline which emphasizes the 
relevance of its pre-learned features. Meanwhile, sentiment 
requires retraining many more features in order to surpass the 
baseline showing that although the pre-learned features bring 

 
 
Fig. 2.  The top orange line with a square shows the ROC curve for the set of 
subjects diagnosed with an official test with AUC (0.97), while the bottom blue 
curve with a circle shows the ROC curve for all subjects in the validation set. The 
square shows the chosen threshold with 98.5% sensitivity and 94.2% specificity 
on officially tested subjects, and the black circle shows the chosen threshold for 
high sensitivity (94.0%) on the whole validation set, although any point on the 
curve could be chosen depending on the use case. 
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value, they may be less closely related. Fig. 3b shows leave-
one-out significance by measuring the performance loss when 
a chosen biomarker model is removed. Compared to the 
sentiment biomarker, the vocal cord biomarker contributes 
twice the significance in terms of detection accuracy. 
  

 
  Table 2. Unique percentage of samples detected by each individual biomarker 
combination. 
 
 

We illustrate similar metrics in Table 2 by showing the 
percentage of unique patients captured by each biomarker. This 
is consistent with each biomarker model bringing 
complementary sets of features, and suggests incorporating 
additional biomarker models may increase the diagnostic 
accuracy and explainability of the MIT OVBM AI architecture 
for COVID-19. Note that the three biomarkers are quite distinct 
because in pairs they find no unique subjects.  

As shown in Fig. 3c, on top of the diagnostic accuracy for 
COVID-19, our AI biomarker architecture outputs a set of 
explainable insights for doctors to analyse the make-up of each 
individual diagnostics as follows: the Sensory Stream indicates 
the expression of the chosen biomarkers; the BrainOS shows 
the model confidence improvement as more coughs from one 
subject are fed into it, signalling the strength of the diagnosis 
and in turn potentially of the disease severity; the Symbolic 
Compositional Models provides a set of composite metrics 

based on the Sensory Stream and BrainOS. Together, these 
modular metrics could enable patients to be longitudinally 
monitored using the saliency map of Fig. 3c, as well as for the 
research community to hypothesize new biomarkers and 
relevant metrics. Future research may demonstrate to what 
extent our model can promptly detect when a COVID-19 
positive subject no longer has the disease and/or is not 
contagious. 

IV. DISCUSSION  
We have proven COVID-19 can be discriminated with 98.5% 

accuracy using only a forced-cough and an AI biomarker 
focused approach that also creates an explainable diagnostic in 
the form of a disease progression saliency chart. We find most 
remarkable that our model detected all of the COVID-19 
positive asymptomatic patients, 100% of them, a finding 
consistent with other approaches eliciting the diagnostic value 
of speech [40].  

Our research uncovers a striking similarity between 
Alzheimer’s and COVID discrimination. The exact same 
biomarkers can be used as a discrimination tool for both, 
suggesting that perhaps, in addition to temperature, pressure or 
pulse, there are some higher-level biomarkers that can 
sufficiently diagnose conditions across specialties once thought 
mostly disconnected. This supports shared approaches to data 
collection as suggested by the MIT Open Voice team [27].  

This first stage of developing the model focused on training 
it on a large dataset to learn good features for discriminating 
COVID-19 forced-coughs. Although coughs from subjects that 
were diagnosed through personal or doctor assessment might 
not be 100% correctly labelled, they enable training the model 
on a significant variety and quantity of data, essential to reduce 
bias and improve model robustness. Thus, we feel the results on 
the set of subjects diagnosed with an official test serve as an 
indicator that the model would have similar accuracy when 
deployed, and to verify this we are now undergoing clinical 

 
Fig. 3.A.  The numbers on the x-axis describe the number of layers in the biomarker models fine-tuned to COVID-19. The fewer required to beat the baseline 
(which is the same architecture trained on COVID-19 discrimination without the pre-trained biomarker models) shows the relevance of each biomarker for COVID-
19. “Complete: shows the final COVID-19 discriminator with all the biomarkers integrated. Fig 3.B. The white dotted part of the bar shows the performance gained 
when the Cough biomarker model is incorporated, while pre-trained denotes individually training the biomarker models for COVID-19 before integrating them 
into the multi-modal architecture on Fig. 1. Fig 3.C. Shows the explainable saliency map derived from biomarker model predictions to longitudinally track patient 
progression. OVBM denotes the final model diagnostic. The BrainOS section shows the model aggregated prediction for 1-4 coughs of a subject. The COVID-19 
progress factor calculates based on the 1-4 cough predictions, a possible degree of severity from the quantity of acoustic information required for a confident 
diagnostic. The voting confidence and salient factor indicate, based on the composite predictions of individual biomarker models, the aggregate confidence and 
salient discrimination for each subject.  
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trials in multiple hospitals. We will also gather more quality 
data that can further train, fine-tune, and validate the model. 

Since there are cultural and age differences in coughs, future 
work could also focus on tailoring the model to different age 
groups and regions of the world using the metadata captured, 
and possibly including other sounds or input modalities such as 
vision or natural language symptom descriptions.  

Another issue that may be researched is whether cough 
segmentation can improve the results. For the screening outputs 
to have diagnostic validity, there must be a process to verify 
recordings correspond to coughs. In the official tests of our 
dataset only three recordings corresponded to speech instead of 
coughs and we had to sort these manually since there is still no 
way to do so automatically.    

This non-invasive, free, real-time pre-screening tool may 
prove to have a great potential to complement current efforts to 
contain the disease in low-infected areas as well as to mitigate 
the impact in highly-infected areas, where unconscious 
asymptomatics may spread the virus. We contend the MIT 
Open Voice approach presented has great potential to work in 
parallel with healthcare systems to augment current approaches 
to manage the spread of the pandemic, especially if combined 
with broader uses of an open approach, as is being attempted by 
the https://www.openvoicenetwork.org. We present some 
possible example use cases:  

Population daily screening tool: As workers go back to 
work, students go back to school, and commuters use public 
transport, to name a few, methods are required to screen 
infected COVID-19 carriers, especially asymptomatics. The 
only screening method currently available is using 
thermometers, however this study [41] showed only 45% of 
mild-moderate COVID-19 cases have fever (this represents 9% 
of COVID-19 positives when asymptomatics are included). 
Meanwhile our tool detects 98.5% of COVID-19 positives, 
including 100% of asymptomatics.  

Pre-selection of candidates for test pooling: The test pooling 
strategy is expected to be employed in many countries, 
especially in low-incidence areas to rapidly identify a sub group 
of individuals likely to be infected, however, “preliminary 
results show there is no dilution and no decrease on test 
sensitivity when minipools of five samples each are used” [42]. 
Group testing with our tool as shown in Fig. 4, could pre-screen 
school classrooms, factories or even countries on a daily basis 
signalling probable infected candidate groups for smaller test 
pooling batches.  

COVID-19 test in countries where PCR/serology testing is 
not possible: The availability of COVID-19 tests worldwide is 
far from evenly distributed. “Even where there is enough 
money, many African health authorities are unable to obtain the 
supplies needed as geopolitically powerful countries mobilise 
economic, political, and strategic power to procure stocks for 
their populations” [43]. This pre-screening tool has the potential 
to bring large-scale detection to areas of the world were testing 
is too expensive or logistically complex, essential to halt the 
spread of the disease worldwide. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. CONCLUSION 
We have created an AI pre-screening test that discriminates 

98.5% COVID-19 positives from a forced-cough recording, 
including 100% of asymptomatics, at essentially no cost and 
with an accompanying saliency map for longitudinal 
explainability.  

A group outbreak detection tool could be derived from this 
model to pre-screen whole-populations on a daily basis, while 
avoiding the cost of testing each inhabitant, especially 
important in low-incidence areas where the required post-test 
confinement is harder to justify. Figure 4 shows that by deriving 
the COVID-19 cough discrimination model for a group test, it 
can correctly detect the presence of COVID-19 in 99.9% of 
groups of 25 people with 5 positives, and 95% of groups with 3 
positives. 

As part of our ongoing clinical trials, data pipelines with 
hospitals worldwide have been setup to continue to improve the 
tool including: Mount Sinai and White Planes Hospitals in the 
US, Catalan Health Institute in Catalonia, Hospitales Civiles de 
Guadalajara in Mexico, and Ospedale Luigi Sacco in Italy. We 

 
   
  Fig. 4. In cases where there are very few infected individuals, a group pre-

screening tool can be derived from the COVID-19 OVBM model to accurately 
alert infected groups while avoiding false-positives as illustrated in the graph. 
With the current accuracy, shown in blue, a threshold of 3 positives in a group 
of 25 are required so that only 1% of groups of 25 with no cases are falsely 
labelled and therefore unnecessarily tested via expensive biological tests. In 
other words, in a campus with 2500 yet uninfected students, only 25 will have 
to be tested with biological methods until 3 people in a class of 25 catch the 
virus, in which case the screening will alert of the outbreak. The x-axis shows 
how the required number of positives in a group, 3 in this example, drops if the 
COVID-19 model accuracy improves. Each line shows percent of groups of 25 
people falsely tagged with COVID-19 with a minimum number of COVID-19 
positives in it. As a second example, assume a country like New Zealand, with 
very few COVID-19 cases, wanted to screen for new early outbreaks and to do 
so tested 50M inhabitants using a PCR or serology test with 99% specificity. 
The country would purchase 50M tests and obtain 500’000 false-positives. 
Meanwhile, assume a group test yielding a 99.9% test accuracy was used, i.e. 
requiring 5 positives instead of 3 in the example above. Of the, 2M groups of 
25, only 2000 groups would be falsely tagged or 50’000 people. Hence, 0.1% 
of the cost and 0.1% of the false positives otherwise. The value of this group 
testing tool is that it enables organizations and countries to pre-screen its whole 
population daily, and rapidly locate incipiently infected groups, without the 
necessity of using an expensive PCR or serology test on each inhabitant. 
 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJEMB.2020.3026928, IEEE Open
Journal of Engineering in Medicine and Biology

 
Technology 

 

 

 

plan on leveraging this data to further train and validate our 
models with the aim of improving pandemic management 
practices. Note from Fig. 4 how the number of COVID-19 
positives required in group testing greatly drops as the 
individual model improves, calling for a larger database and 
further refinement of our model.  

To that end, we have reached an agreement with a Fortune 
100 company to demonstrate the value of our tool as part of 
their COVID-19 management practices. As we have shown 
there are cultural and age differences in coughs, future work 
could focus on tailoring the model to different age groups and 
regions of the world using the metadata captured, something we 
would like to test at the company site.  

Eventually we hope our research methods inspire others to 
develop similar and complementary approaches to disease 
management beyond dementia and COVID-19. We have 
followed the MIT Open Voice approach [27][10] that postulates 
voice samples may eventually be broadly available if shared by 
smart speakers and other ever-listening devices such as your 
phone. Voice may be combined into a multi-modal approach 
including vision, EEG and other sensors. Pandemics could be a 
thing of the past if pre-screening tools are always-on in the 
background and constantly improved. In [44] we introduce 
“Wake Neutrality” as a possible approach to make that vision a 
reality and discuss associated legal hurdles. 
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