Digital Twins: Evolution in Manufacturing

By Roberto Saracco
Table of Contents

1. Introduction 3
2. Digital Twins Evolution 3
 2.1 What is a Digital Twin? 3
 2.2 Picking up a Life of its Own 7
 2.3 Extending the Digital Twin 8
 2.4 Personal Digital Twins 12
 2.5 Cognitive Digital Twin 14
3. Use of Digital Twins as of 2022 16
 3.1 Manufacturing 17
 3.2 Construction 18
 3.3 Energy 19
 3.4 Automotive 20
 3.5 Healthcare 21
4. Steering Evolution 22
 4.1 Manufacturing Leads 24
 4.2 Fostering and Inheriting 25
 4.3 Digital Transformation 26
5. Bringing it all Together 28
6. Acronyms 30
1. Introduction

![Digital Twins](image)

Figure 1. Digital Twins used to be a straightforward, well defined concept. As they evolve it becomes more difficult to have a precise definition that is agreed by all. Image credit: IEEE DRI

Everything evolves, right? Why shouldn’t Digital Twins evolve as well? Indeed, they have been evolving, and as I look at what is happening around the world, they will be evolving even more in many sectors. I guess one should take for granted a widespread knowledge of what a Digital Twin is, particularly with an audience coming to listen to the evolution of Digital Twins. As a matter of fact, the concept of a Digital Twin was straightforward just 5 years ago; a digital copy of a physical entity. Yet, when I discuss this with different people, I get a variety of nuances, and when I think about DTs today in different sectors and how they are evolving, the definition becomes fuzzier and fuzzier. In a way, this is proof that there is a significant evolution under way, but at the same time, the fuzziness supports further evolution (if something remains well defined, it is constrained by its definition, i.e. does not change, nor evolve!).

Hence, the very first point to address is to look at the definition of a DT (for the record, last year I participated in a discussion with the group of authors engaged in writing a book on DT (which should be out in a few months), and again, more recently, in a discussion within the EU expert group on personal digital twins. In both cases, different opinions on the definition of DTs have (and will) emerge, and it hasn’t been possible to come to a single, unanimously agreed-upon definition).

2. Digital Twins Evolution

2.1 What is a Digital Twin?

To start, let’s look at the “old” definition: a digital copy of a physical entity. The digital copy:

- Mirrors the physical entity, i.e. its digital model;
- Keeps track of its’ real-time status and shadows the physical entity;
- Keeps a record, thread, of the evolution of the physical entity.

The first point – In this definition, it is “implicit” that a Digital Twin is not, and never was, a “copy” of the physical entity. First, the physical entity is “as is” at this precise moment, and because of the “thread”, it does not have “memory” of its past (not necessarily at least). Second, even disregarding the thread, the digital model updated to the present status (through the shadow) is “always” a partial model of the physical entity (to be extreme, we would never be able to model each individual molecule...
making up the physical entity). This partial model is fine, as long as it represents what matters from the point of view of using the digital twin.

Now, we come to the second point: as the use of the DT changes, we need to change the digital model. I’ll explain in subsequent post what this means from an evolution point of view.

When dealing with the digital model, one important aspect is how we can create (and re-create) it. Historically, the digital model of a product in manufacturing has been created (and by far still is) using the output of Computer Aided Design (CAD), a tool used in the design phase. Hence, most of the time, the Digital Model precedes the existence of the physical entity. In industries such as building construction, the digital model can be the result of the Building Information Modelling (BIM), a tool, and standard, used in that industry. Again, in this scenario, the digital model precedes the physical entity. In other cases, for example as in healthcare, the digital model is generated after the physical entity and can originate from the Electronic Health Record (EHR). The digital model can be “generic” or specific to a physical entity. In the end, we will always need a specific digital model that, in the case of a generic one (for example, the CAD model), requires simultaneous and constant shadowing of the physical entity

In other words, the manufacturing process produces many “pieces,” each one similar, but each associated with a specific instance. All those instances will share the same digital model but will have different shadows and different threads.

However, there is another way to create a digital model – by observing interactions of the physical entity. This is what happens with Alexa, for example. Through its interaction with the user, Alexa has the potential to create a digital model of the user pertaining to their profile and behavior. Note, I am not saying that it does this today, just that it “might” and can. Voice-assistants can distinguish unique voices among users, and, consequently, have sufficiently and accurately developed a digital signature of a person’s voice—different Digital Twins. The voice digital signature can, of course, show pattern alteration (still the same person speaking, but with a different intonation…), and Alexa can derive information about the mood of the user (and react accordingly). Of course, there is plenty of information in the interactions (what the user wants, when they want it…) enabling the creation of a model of the users’ habits, interests, etc.

I will demonstrate how this manner of creating and expanding a digital twin may become crucial assets in manufacturing in the framework of Industry 4.0.

A digital model is fine in the design phase. Actually, we are hearing a new word: virtual twin. A Virtual Twin models a physical entity that does not yet exist, and may never exist, in the physical space. We create the “idea” of an entity, and we keep that entity in the cyberspace, ready to interact with other entities both in the cyberspace and in the physical space.
This provides industry with great flexibility – what used to be a step in the design phase (resulting in a physical product) becomes a soft product that can potentially be sold on the market.

Nevertheless, the physical dimension remains crucial, and the virtual twin derives its value in its capability to interact directly, or indirectly, with the physical world. The “mirroring” of the physical world implies the capability to remain updated on the real-time status of the physical world. In the digital twin, this is done through the shadowing of the physical entity. The updates may be generated by the physical entities themselves (through embedded IoT), or they can come from the environment (for example, video cameras on the shop floor assembly line that report what is going on in terms of video streams. These streams are analyzed by image-recognition AI that produces data “describing” the current status). At a factory level, we are increasingly seeing a blending of data coming from the robots on the production line, and those coming from various types of cameras. Additionally, data may be derived from the interactions taking place amongst workers, and between workers and machines. The entire factory is becoming an aggregate of digital twins interacting with their physical counterparts and among one another.

Additionally, the assembly process may result in the assembly of the product digital twin that will be included as part of its data thread related to its manufacturing. The “construction” of the digital twin flanks the construction of its physical entity. This requires a new way of looking at the manufacturing process.

Digital twins can also support embedded IoT to provide the status of their physical entity or can be used by an external application to simulate a predicted outcome or status of the physical entity. This will need to be “confirmed” by data retrieved from the physical space. For example, the engine on a flying plane will be reporting data (pressure, fuel flow, thrust, etc.) at predetermined intervals, and the digital twin will be matching this data with additional data derived through simulations applied to the
digital model. In case of discrepancy, the DT (or an external system) will be required to identify the issue and take the appropriate actions accordingly (these can also include a refinement of the digital model). As a matter of fact, notice that if it is the DT that carries out the analysis, this DT is a significant extension of the DT concept. All the shadowed data accumulates and results in the digital twin thread, becoming a source of "intelligence" for both that specific digital twin, and for "generic" instances of that digital twin. This is a very important possibility that opens the door to the provisioning of services flanking the product.

For example, Tesla does this through data analytics. Tesla monitors the behavior of approximately 2 million cars produced since 2009, and can assess both issues on a specific car, as well as issues derived during the production of a given batch of cars. Furthermore, the data retrieved is used to continuously refine the manufacturing process. Information derived from shadowing, and data analytics on threads, is used to provide customers with operation and maintenance support.

The thread includes both data derived from the physical twin, as well as data that can be acquired from the context of the physical twin. A growing part of the thread is formed by the analysis of the effects of interactions between the DT and the Physical Twin (PhT). In other words, the digital twin is evolving to include knowledge and understanding. This is relatively new, and it marks a departure from the original concept of Digital Twin.

What this means is that the Digital Twin that used to be a lesser version of an entity in comparison to its physical twin (because it represented a subset of the physical twin) is now becoming "larger" (in some respects) than its physical entity. In turn, this means that industry, and market, will increasingly start to use the DT to derive features that would not be available in the PhT.
2.2 Picking up a Life of its Own

The continuous expansion of data sets accrued by the DT, and the embedding of software capable of providing analytics (more and more AI based) on this data is de-facto transforming the DT into a knowledge entity.

The knowledge is about the PhT—what it is, how it is performing, what are the interactions taking place with the environment. This knowledge is rapidly extending to the ambient in which the PhT also operates with knowledge derived from the analyses of the knowledge space of other instances of that DT. This latter knowledge is usually created outside the DT by an external function (most likely leveraging on AI and ML). Although this knowledge is created outside of the DT, the DT is designed to expand and refine its decision capability. Therefore, it becomes part of the DT itself.

DT knowledge is accrued to enable decision making and to record its interaction with the PhT: it is a knowledge “to take actions,” not a knowledge to know about things. This is usually referred to as “executable knowledge.”

Executable knowledge results in interactions among entities (autonomous players). As shown in figure 3, we find this knowledge in the workings of a company, manifesting itself in the ways activities are performed within the company, and in the interactions the company has across its value chain.

Figure 3. Knowledge is an infrastructure enabling business and operation within a Company and across the value chain. The Knowledge Infrastructure connects local knowledge and creates and emerging system wide knowledge tied together through processes. Image credit: DRI IEEE
This creates a knowledge infrastructure that, in turn, generates an emerging system-wide knowledge.

The DTs become knowledge hubs, and as they expand their capabilities, they become independent knowledge entities that can be used in other contexts. This is an interesting evolution in terms of manufacturing processes and business opportunities since they can be used “independently” of their PhT. Furthermore, the possibility to share knowledge through interconnection of DTs leads to the creation of DT clusters.

This is the case in a smart cities. Singapore was the first city to leverage Digital Twins— independently created to mirror specific resources by clustering them, creating a “Singapore City” DT. This DT is an abstraction of the city modeling the interplay of its various infrastructures and components.

Likewise, in a manufacturing context, we can cluster the DTs of robots on a shop floor to create the DT of that floor. This is not just a static representation of the shop floor, it is a dynamic model of what is going on AND what can go on there. We are seeing more and more applications of these DT cluster concepts in manufacturing— used for monitoring and planning a new production line, determining how to restructure the shop floor, how to change/tune individual components (robots, teams, etc.), and/or a portential redesign of the whole factory.

2.3 Extending the Digital Twin

The evolution of Digital Twins, as schematically represented in figure 5 (on the next page), can be “read” from different perspectives. For examples, like the evolution of:

• the degree of representation of the physical entity.
• the interaction level among the physical entity and the DT.
• the relevance of the DT in the operation of the physical entity.
• the functionality offered by the DT.
• the autonomy level of the DT.
• …

However, one key component relevant to this discussion is of a different perspective:

1 Dassault. https://www.youtube.com/watch?v=AhNSHk765DM
the transformation of the DT in a product by itself

Notice that this, in principle, applies to all stages represented in figure 5.

Indeed, one could “sell” the digital model created in stage one as a blueprint that can be used by other companies, as well as “sell” (I am just providing examples here) a DT at stage 4 to a third party to embed additional functions that spice up the physical entity (actually this would be a good way to promote a value-added ecosystem on a product…).

This is a very significant change, and it is a “fall-out” of the Digital Transformation.

By shifting processes, assets, and part of the manufacturing “output” to cyberspace, the resulting products from the manufacturing process may be partly in the physical space (as before), and partly in cyberspace. In the latter case, it can be a Digital Twin—See figure 5.

Indeed, if we look at the manufacturing process, we have digital twins of the tools used (such as robots in the assembly line and mirroring the whole process/processes of the factory), and we have the digital twin (instance) of the product that is created and “manufactured,” along with the physical product itself.
This aspect becomes particularly relevant once we are dealing with stage 3 and onwards. A digital twin at stage 3 interacts with the physical product, and it might embed functionalities designed to enhance its operation and to monitor / provide maintenance. At stage 4, it can augment the functionality of the physical entity, and at stage 5, it can have functionality independent of the physical entity.

All these functionalities can be construed as “services” to be sold with the physical entity, after the sale of the physical entity, or even independently of the physical entity (DT at stage 5).

As a matter of fact, one can envisage in the (near) future a decoupling between the soft side of a product (a DT), and the hard component. This decoupling may result in some industries focusing on manufacturing the soft part, and others the hard ones. That is obviously the case for smartphones, tablets, and personal computers where you have a full decoupling between the application part and the “device”—each one being manufactured by different parties. A standardized platform (the OS in the examples mentioned) ensures that soft goes hand-in-hand with hard. The soft part, the DT, can be the real provider of features, using the hard part as an interface to deliver the features.

However, what I am pointing out here is that, as manufacturing is reshaped throughout the Digital Transformation, the Industry should look at ways to exploit the cyberspace. By requiring the creation of a Digital Twin of the Manufacturing process, and along with it of the product (since the product’s DT is used to steer the manufacturing), it makes more sense not to think of this DT as a tool. Instead, consider this DT a product in itself, and leverage the opportunities.

This, however, means that Manufacturing creates both products and services, and in turn, this requires a different set of business processes and procedures.
If we stretch this idea of a Digital Twin as a “product” able to deliver value to the customer, we can foresee an evolution (at stage 5 and beyond) where some companies will be creating and selling Digital Twins. These will operate as software applications that run on platforms such as smartphones, industrial platforms (like Mindsphere), Government public platforms, and coming soon (end of this decade), a communication platform like 6G.

What would be the difference between a software package we use today and the Digital Twin kind? Well, the Digital Twin (to be faithful to its name), is a software package that mimics an entity. For example, you might have a company that offers a Digital Twin to mimic a person. You and I will buy that Digital Twin (possibly running it via our smartphones), and we will instantiate it to mimic our person for the traits we pre-select. In another potential scenario, after buying this “person’s digital twin” from a company, I will instantiate it by opening my EHR to it—provide access to my wearables (to get the stream of physiological data that these harvest), connect it to my doctor, and provide its’ identity in my EHR so that if someone ends up in the emergency room, any hospital can get in touch with it to share data.

In the manufacturing area we could buy a Digital Twin (a model of a manufacturing process, of a generic robot in an assembly line, of a warehouse, etc.) and instantiate it to the factory environment. The Digital Twin “model” will be expanded/refined to match the current physical entities and will acquire the “thread” (or historical record) of those entities. Furthermore, it will be connected to the physical entities to shadow them. From that moment on it becomes an instance of the digital twin acquired, and the real digital twin of the associated entities.

This mechanism is based on the idea that we can create a generic Digital Twin, with an embedded model and a set of features, along with a tool (it can be part of a platform) that can support the client/user in the instantiation of the Digital Twin by adding specific knowledge.

Figure 6. A digital twin can become a product in itself that a company may create and sell to a customer. It will be up to the customer to instantiate the Digital Twin to serve in the intended environment. In this picture the idea of a digital twin acquired by a third party that can be used in the manufacturing process. Rather than buying a robot a company will be able to buy a digital twin of a robot with the capability of instantiating it to match existing robots in a specific environment to take care of specific tasks. Image credit: Siemens
The idea of a Digital Twin embedding knowledge derives from the work done by IBM to create a digital twin mirroring the newer models of robots used in manufacturing. This idea takes the concept of static modeling (part of the Digital Twin Digital Model) to the next level. These newer models have a greater level of autonomy and can operate by taking autonomous actions and sharing them with the environment (such as other robots in the assembly line and in the supply/delivery chain). This autonomy requires a knowledge of the context and of the goals (plus a framework of do's and don't's). In 2018, IBM came up with the concept of Cognitive Digital Twins\(^2\) to match the evolution of robots in manufacturing, and this lead to an extension of the Digital Twin concept.

The ongoing shift in automation on the shop floor, involving smarter and smarter robots, is also known as Robotic Process Automation (RPA). The Cognitive Digital Twins (CDTs) are an integral part of this transformation.

Notice that knowledge is both embedded in a CDT, and shared across several CDTs, creating a knowledge infrastructure that characterizes the knowledge space of operation of CDTs and of DTs. In other words, the knowledge space of a CDT becomes the operation environment for all digital twins operating in that environment.

2.4 Personal Digital Twins

As should be clear from the previous discussion Digital Twins are a powerful and flexible way to represent salient characteristics of a physical entity and they have been evolving fast extending their reach to represents an ever larger variety of physical entities.

One might wonder if they would also be suitable to represent a person. Indeed, this is not a hypothetical question since we already have a number of examples of digital twins used to represent parts of the characteristics of a person.

As an example Dassault has created a digital model of a human heart\(^3\) and it is looking into extending it into a Digital Twin by creating a shadowing using data from wearable (measuring heart beat and monitoring the electrical activity of the heart) and keeping the thread. It is not alone. The pharma industry is routinely using organs simulation and fluidic chips, organ on a chip, to experiment with drugs. This chips have an associated digital twin and there is interest in using this digital twin, through instantiation, as previously described, to monitor living human organs reaction to drug protocols. There is even a name for this type of Digital Twins: Deep Twins.

Through aggregation (this is already happening in Pharma with the shift from organ-on-a-chip to body-on-a-chip) we might expect to have a digital model that can mimics the physiology of the body that can be instantiated to create a Person Digital Twin -PDT- mirroring the physiology of a specific person, enriched with genomic data (DNA sequencing) and with a thread recording the healthcare

history of that person. By connecting this PDT to the person's body using wearable and other types of ambient sensors we would have a full blown PDT.

![Diagram: Generating Increased Usefulness]

We are not there yet, but we already have some limited (in terms of mirrored characteristics) kind of PDT in the healthcare sector supporting very concrete and useful applications.

Obviously a “person” is much more than its physiology! The physical shape of a person is also another characteristics that may or may not be important. As an example if you are looking for an apparel, a t-shirt or a pair of shoe, your physical shape is very important. On the other hand, if you are applying for a job -like data analysts- your body shape, your sex and even your physiological characteristics are all be irrelevant. What would matter, to you and your employer, is the type of skill, experience and knowledge you can put on the table.

Historically, particularly in the Westerns world, we have got used to distinguish between the body and the mind (soul). It is not the place to enter into a discussion on this but it is important to notice that the representation of the aspects related to the physical versus the cognitive sphere differs significantly.

Indeed, the work on extending the Digital Twin to a person have resulted in the identification of the Cognitive Digital Twin of a person, to represent the knowledge, moods, character, feelings …, and the more general PDT that may or may not include the soft aspect of a person.

Hence with the concept of PDT we refer to digitally mimicking certain aspects of a person, and we need to specify what these aspects are. With CDT we are only referring to the cognitive aspects, and again we need to specify the extent of mirroring being done.

In the case of PDTs it makes sense to take a pragmatic approach and look at the way these may be used to outline the evolution roadmap. Although the roadmap looks similar the the evolution roadmap of Digital Twin, reported in figure 4, the emphases here is on the application and on the issues deriving from their application.

![Diagram: Increasing Usefulness]
As shown in figure 9, we can compare the PDT evolution with the DT evolution:

- at stage 2 we have a copy of certain characteristic of a specific person, such as the ones derived from the sequencing of the genome of a person -used as an example to define a drug protocol for breast cancer (the first stage would be one where we only have a generic model of some person’s characteristics, like the one used in Pharma for testing drugs on a chip);
- at stage 3 the PDT may become a sort of prosthetic flanking the physical person and interacting with it;
- at stage 4 the PDT can take over some aspect of the person augmenting the person (like a PDT that can harvest information on the web and make it available when needed);
- at stage 5 the PDT can behave as an avatar of that person acting as a proxy in the cyberspace (and possibly interacting with the physical space on behalf of the person).

This can be the case in manufacturing where the PDT of a technician can provide support in the shop floor (both to machines and to other workers) with no need of presence of the physical person and, in principle, without the physical person being aware of the activity of her avatar. It is obvious that the higher the stage and the trickier the management of the PDT as well as the ethical issue faced.

2.5 Cognitive Digital Twin

As mentioned the concept of Cognitive Digital Twin, first defined in the context of smart robots by IBM as a way to represent the knowledge of the robot, an ensemble of robots on the shop floor, has been applied to the representation of the knowledge of a person, becoming a “subset” of the Personal Digital Twin of that person. As a matter of fact the CDT could express the only set of characteristics of a given person because that is the set relevant in a given context, like:

- knowledge management at a company level;
- knowledge development in an education environment, like a college, university, training program
- knowledge asset management at a personal level (what do I know, what should I know?)
- as a trading asset in a business environment

One should recognise that the management of “personal knowledge” is trickier than the management of a machine knowledge, be it a robot or an application AI based from the point of view of mirroring what that person knows in terms of exploitation of there knowledge, in other words mirroring that person’s “executable knowledge”.

A person may:

- know something but can be unable to apply that knowledge to the problem at hand
- know something but be unable to face a given situation (e.g. stress) and apply that knowledge
• might have known something and then forgot all about it
• might know something and yet be unwilling to apply -share- that knowledge.

It should also be noticed that in the machine domain there are also tricky issues in knowledge representation and management, like:

• A first embedded set of knowledge is embedded in the machine (application) both in terms of a static representation, models, data, procedures, and in terms of algorithms -how to make sense out of existing data and interactions. This first set is fully controlled by the designer and can be tested extensively. However, as more and more data becomes available this first set of knowledge may prove to be difficult to be tested exhaustively (think about the millions of images used to train an image recognition application, like the one present in autonomous cars);
• The first set of knowledge is expanded through the lifetime of the machine/application operation and it may become impossible to keep track AND to test the interpretation / implication of the new data accrued on the pre-programmed algorithms;
• The new wave of artificial intelligence is not “pre-designed” nor “pre-programmed”, rather it is emerging from algorithms that are competing one another (like GAN - generative adversarial networks). Here, the designer teaches the AI how to learn by defining objectives and values, letting the AI to work out those algorithms that are better approaching the goal and maximising values. The AI builds up both a knowledge and a reasoning (this is what transform knowledge into executable knowledge) on its own and it becomes difficult to create a representation of that knowledge. The reality is that the only accurate representation is the AI itself, as in the case of the human knowledge the only accurate representation is the brain/mind itself and this can only become visible as it is executed.

From this discussion it is clear that any CDT, both associated to a machine and to a person, is at the very best a limited and often imprecise model of the real executable knowledge of its physical entity. As in many other areas of our “understanding” of the world, we have to make do with what we have.

As long as the CDT proves to be useful, and we can control the potential shortcoming, it is fine. This is what is happening today. We have a tool that is not perfect but can help in the management of knowledge as an asset.

The interest on CDT is growing and companies are starting to look at that as a tool to effectively manage knowledge assets. As Digital Transformation is making knowledge a crucial component of
business (DX shifts atoms into data but data as such are a commodity with very limited value. The value has to be leveraged through the “understanding of data and their implication in a specific context at a specific time), it becomes ever more important to manage the knowledge assets of a company.

A CDT can “capture” that knowledge asset and makes it an active operational component of the company, that is the company may use the CDT in place of the physical entity that has that knowledge.

The first step, as shown in the graphic, is to use the CDT as a representation of a knowledge asset in the company. This can help in assessing what is the available knowledge with respect to the one needed. Notice that this is something that is already happening (even without the CDT): an HR department has a “map” of the company’s knowledge space, i.e. who knows what. This is essential to associate human resources to tasks (technical departments have a map of the available tools and what they can be used for, as an example what is the flexibility of a robot and how it can be used in a needed environment). A CDT would provide a sort of standardised way to represent the knowledge. In addition a CDT will have the capability to keep this representation up to date (through shadowing). It is also important, as mentioned, to identify gaps (usually it is a technical area that defines the needs and the HR looks for ways to meet those needs, identifying possible gaps).

The next step, shown in the graphic, is to identify the missing knowledge in the knowledge space outside the company (the IEEE knowledge ontology is a good reference point to navigate the knowledge space of technology, including the very latest of tech). Once this “missing” knowledge is identified it should be brought inside the company.

There are, of course, several ways to bring the needed knowledge “inside” the company:

- Train some employees to acquire that knowledge (in this case one should also identify those employees that would be better suited for training -pre-existing competences, time availability…);
- Hire a new employee with the desired knowledge;
- Hire a consultant to support the project with the needed knowledge (makes good sense if that need is expected to be temporary…);
• Partner with another company that can provide that knowledge and take care of the part of the project that requires that knowledge
• Buy a machine/application embedding that knowledge (add to or upgrade existing resources).

The added knowledge will be reflected in the related CDT, the one associated to the trained employee, to the newly hired one, … to the machine/application.

Further down the lane we can imagine that the acquisition of knowledge can happen at the CDT level without having to involve the physical entity. Now, this might seem like science fiction but as a matter of fact is what happens with robots and sw applications where new software version can be installed “adding” knowledge.

Could this be done for a person? we have clearly no way to download knowledge in a brain, it has to be acquired through “learning”. However, if we consider CDT at stage 4 and 5, where the CDT is an augmented set of the associated entity knowledge, we can well add knowledge to it.

The crucial point here is that this CDT will in part mirrors the existing knowledge of its associated person and in part will augment them. Notice that with a CDT the knowledge owned constitute a single “space”, hence the (AI) functions that are transforming the knowledge into an executable one take the whole knowledge space into account.

A new word has been coined to define this type of CDT that has an embedded augmented knowledge: and hybrid CDT (the same name applies to the compound CDT including a machine CDT and a person CDT cooperating in symbioses).

In this “future” (but not science fiction) scenario we face several tricky issues as previously mentioned. We are also entering into a new business space as I will discuss later.

3. Use of Digital Twins as of 2022

After the previous discussion on the evolution of digital twins, from -basically- an academic point of view with a separation into stages and types (DT, PDT, CDT, OPDT, Hybrid…) and before looking at the further expected evolution it makes sense to take a look at how, today in 2022, digital twins are used in various sectors, a sort of reality-check.
3.1 Manufacturing

Manufacturing has been the first area to put the concept of Digital Twin at work and they are now an integral part of manufacturing processes in many companies. For sure they have become one of the pillars of Industry 4.0.

Manufacturing is based on tools and processes, orchestrating the use of tools and resources throughout the whole PLM. Digital Twins are derived from tools (CAD) and used in tools (CAM). They have become tools in themselves supporting simulation and monitoring.

“Orchestration” is made through processes and through tools supporting them. In the case of Digital Twins the orchestration is achieved and supported through platforms. The major manufacturing tools providers have created their own platform, like Siemens Mindsphere⁴.

Most DTs used in manufacturing are at stage 3, i.e. the DT interacts with its physical entity only for the sake of remaining in synch with it. It can also act as a gateway for other applications (like analytics, simulation) to interact with the physical entity. An anomaly, as detected by data analytics provided by the physical entity via its associated DT, can be processed by an external application resulting in a command that will be handed over to the physical entity through the DT.

The same applies to the DTs associated to most products. They are created during the manufacturing process and remains in the ownership of the manufacturer to connect with the physical product throughout its life time.

A few of these DTs are starting to embed “intelligence” to perform data analyses and to assist the physical entity. In a way that is a tiny steps towards becoming autonomous. Some are also connecting to the cyberspace to get -autonomously- other data that can be used internally. Self driving cars are a clear users for this kind of evolution (getting a better grasp of the context by communicating -autonomously- with other DTs).

Mevea⁵ is possibly one of the most advanced user of DTs in the industry since they are basing their business model and competitive advantage of the adoption of DTs throughout the life cycle and are using the DT of their products to deliver services. They use the shadowing to get insight on the use of the products. They compare shadowing of several DTs in a given product line to improve all of them based on experiences derived from each of them. Their DTs are in many cases approaching stage 4 since some of the product functionality is actually being delivered through the DT.

⁵ https://mevea.com/solutions/digital-twin/
General Electric6 is another company (one of the first -matter of fact) that is heavily rely on Digital Twins to monitor the use of their product and to provide proactive maintenance services (placing their DT somewhere between stage 3 and 4).

The Competence Industry Manufacturing 4.07, located in Turin in the Turin Polytechnic Campus and clustering many companies in the manufacturing area, is developing a digital twin infrastructure8 that can be used by their associated company to create a virtual lab9, consisting of both physical and virtual objects that can be inspected and assembled in a hybrid mode (virtual +physical). Here DT are present at all stages 1 to 5.

3.2 Construction

The Construction Industry has been working with digital models for quite a while, based on BIM -Building Information Modelling. In the last years more and more sensors -IoT- have been inserted in building at construction time (and in a several cases IoT have started to be retro-fitted in existing buildings. These sensors are generating streams of data that enables the constructor to create a shadow and a thread, i.e. the three components of a Digital Twins.

The development of software to manage these DTs and to leverage them providing operation and maintenance services has been an obvious next step.

Figure 13. Building operation and maintenance benefit from the existence of an associated Digital Twin. In this figure three screenshots of a worker’s smartphone with an app that use the digital twin to explore data associated to the building. In the first two screenshots AR is used to highlight temperature of different parts of the building. This helps in evaluating the level of insulation provided by the materials used. It can also show the presence of cracks in the structure (at the crack level there is a clear temperature gradient). Image credit: ARUP

ARUP, one of the largest construction companies operating worldwide in over 150 countries is using Digital Twin technology through the construction phase and thereafter monitors the buildings operation. Over time a historical record grows and those data can provide hints on degrade of certain parts of the building that needs to be fixed before any damage occurs. Proactive maintenance is cheaper (it can be scheduled) than repairing damage (reactive maintenance). Also, the digital twin may interact with components in the building infrastructure to tweak operation and decrease risk of damage (like decreasing pressure in pipes…). DTs operate at stage

7 https://cim40.com
8 https://cim40.com/projects/dtman/
9 https://www.reply.com/brick-reply/en/content/brick-reply-is-part-of-the-competence-industry-manufacturing-4-0
3.3 Energy

General Electric, as already mentioned, has been working for several years applying DTs to the energy production, specifically using them to monitor and control wind turbines. Wind farms are costly and complex systems where efficiency can be increased by fine tweaking of the blades angle and this in turns alters the flow of the air (wind blowing across the wind farm). Hence the fine tuning has to take into account the impact on other wind mills to achieve not a local best but a global optimisation. Also, monitoring is important to enable proactive maintenance, rather than having to resort to recovery maintenance. GE equipped wind farms10 all over the world have digital twins for each single wind mill, digital twins mimicking the processes and a digital twin for the whole farm. These digital twins are "hosted" on Amazon AWS Cloud providing both a local presence and a centralised hub (in the cyberspace there are no distances).

Digital Twins are talking with one another both among the ones mirroring equipment in a specific wind farm and across wind farms. Machine learning is used to create knowledge and to fine tune processes and operation/maintenance decision as part of the GE Assets Performance Management Software11 -APM-. Interestingly, the creation of digital twins to mirror local conditions, processes and equipment (in addition to the ones provided by GE that is already delivered with its associated DT), can be done using a Digital Twin library provided by GE that has reduced the time to create a customised DT by 75%.

As shown in figure 14, the digital twin plays a role of connecting the physical entity, the wind mill, to all the relevant components of the wind farm as mirrored in the cyberspace12.

11 https://www.ge.com/digital/applications/asset-performance-management
12 https://www.researchgate.net/figure/Digital-twin-technology-in-the-wind-turbine_fig5_354766323
Operation data from the wind farms are reporting a 40% decrease in reactive maintenance, thanks to the use of Digital Twins.

A further interesting feature of GE DTs is that they can be used as knowledge repository. When a staff turnover occur the DTs can be used for training the new staff and they can also be used to let the new staff get in touch with experienced ones located in other parts of the world, a very smart use of DTs showing the convergence of product-service-knowledge.

This extended use of the Digital Twin has some aspects that would place it at stage 5.

3.4 Automotive

The automotive sector has adopted Digital Twins technology in the manufacturing to mirror robots in the assembly line. In the last few years it has started to create and use digital twins of the product, vehicles produced. More and more automotive companies are nowadays equipping cars (and trucks) with IoT and receive a stream of data reporting the various car components status. The stream of data often includes location data and this may create an issue of privacy. Some manufacturers, to avoid this type of issues keeps the data record in the car and these data are only harvested when the owner requires a car check up (some of the data ends up in the key fob). In this case all data analytics take place in the car.

A whole new class of IoT and AI supporting chips designed to provide intelligence at the edge (like the STM 32 series) is now enabling local intelligence and support for local operation of a Digital Twin. This local intelligence would be able to both signal an emergent issue to the driver as well as to report the problem to a service centre for proactive maintenance, possibly on the fly without disrupting the service (the DT may take action, autonomously or guided by the service centre -a software application-, to alter the vehicle parameters thus ensuring that it can keep going deferring the required maintenance to a later time).
For the time being, however, and to my knowledge, only Tesla\(^\text{13}\) has a real digital twin associated to each one of its vehicles. Daimler\(^\text{14}\) (trucks), Porsche\(^\text{15}\) and Mercedes (DT used in production\(^\text{16}\) and for Formula 1 cars\(^\text{17}\)) are hinting at adopting DTs for their products. Tesla has embraced Generative Design\(^\text{18}\), an evolution of CAD -Computer Aided Design- that uses AI to optimise the design studied by the engineers based on the goal. Associating AI to the Digital Twins of the cars already in use (to the data provided by those DTs) it is possible to take into account feedback from the “operation” field, in the true spirit of Industry 4.0. Each Tesla car\(^\text{19}\) is associated to a DT and that DT is reporting back to Tesla GB of data every day. This avalanche of data is analysed through AI (and Machine Learning) resulting both in monitoring, offering of services, and fine thing of production. Since Tesla cars are basically computers with specialised software it is possible to update the software whenever needed, both to fix glitches and to offer new features. Here again we are seeing the convergence of product, service and knowledge. Data collected by Tesla from their cars are massive, an estimated equivalent of 3 billion miles of data are now on their servers enabling unique (in the automotive market) data analytics, AI and ML. Consider that a car may generate a few TB of data each single day! No surprise that some analysts look at Tesla not as an automotive biz, rather as a data company\(^\text{20}\).

By far Tesla is using DTs at stage 3, however there are a few nuances that show a use that would place them at stage 4 and even 5.

3.5 Healthcare

Healthcare is an industry with a complex infrastructure and plenty of equipment. Think about hospitals, medicine design and production, care centres … It is also an area that is very sensitive in terms of privacy and crucial for the well being of the single individual and of society. Last but not least, it is a big spending area that weights on the individual and Country budget. No surprise that Digital

16 https://group.mercedes-benz.com/innovation/case/connectivity/industry-4-0.html
20 https://www.aidataanalytics.network/data-monetization/articles/tesla-automaker-or-data-company
Transformation is seen as key to sustainability of the whole area and Digital Twins are used to increase effectiveness.

Big companies like GE21 and Philips22 have adopted DT to monitor and control health equipment and have recently started to use Personal Digital Twins to monitor patients. PDT are also used by pharmaceutical companies to support design and trials of drugs. A driving force in the evolution will be the use of chatbots. These will morph into PDTs to provide personalised assistance.

DT of human organs23 have been designed and used in simulation. It is a small step forward to instantiate these DTs to specific patient transforming them into PDTs.

Each person has a growing set of personal data that can be used in medical evaluation and healthcare protocol decisions, from the very basic data related to the patient characteristics (genome, proteome, metabolome, …) to patient health record (exams, illness, drug prescriptions, …) up to patient behaviour and environment (diet, habits, working environment, …) and inherited traits.

All this is augmented by monitoring data derived from wearables (smart watches, fit band, ambient sensors, …) and medical devices providing the “shadowing”.

Healthcare industry is using DTs and PDTs at stage 1 through 3.

4. Steering Evolution

The evolution of Digital Twin is happening onto 4 main directions:

1. Extension through the product life cycle
2. Extension in depth
3. Extension over the value chain
4. Extension into the business area

Some industries have been using digital twins in the manufacturing phase, some in the design, others are using them to monitor the product. It is quite natural that these industries will be looking at extending the use of Digital Twins throughout the whole project and product life cycle. In doing so they will need to expand the data set associated to the Digital Twin and the set of interactions the Digital Twin engage with. Almost no industry is using at this time the Digital Twin to cover the product and of life.

21 https://www.ge.com/news/reports/these-engineers-are-building-the-industrial-internet-for-the-body
22 https://www.philips.com/a-w/about/news/archive/blogs/innovation-matters/20180830-the-rise-of-the-digital-twin-how-healthcare-can-benefit.html
23 https://www.3ds.com/products-services/simulia/solutions/life-sciences-healthcare/the-living-heart-project/
The growing interest on sustainability and recycling is increasing interest in leveraging the Digital Twin also for that phase.

It should also be noted that many industries are using digital twins having inherited them from the tool providers that is delivering the tools (robots) used in the production/assembly line with associated digital twin that have to be used to operate the tools. In most cases they come along with a platform (like Mindsphere). It makes sense for these industries to adopt the Digital Twins and extend their use to flank the product.

In other cases, the extension is the fall out of the shift of the industry to the cyberspace, by executing the Digital Transformation. All considered we can expect that DTs will become pervasive in the whole life cycle and that more and more products will end up flanked by a DT.

The second extension is towards a more comprehensive mirroring of characteristics of the physical entities. This is fostered by the increased use of embedded IoTs. The availability of more and more data about the entity is naturally leading to an extension of the digital model of the entity, the shadowing becomes more accurate and the thread grows significantly. Some industries might even see this as a step by step approach to digital twin. You start with a minimal digital model and minimal shadowing and then you grow over time in step with the use (exploitation) made. This is surely the case for PDTs in healthcare were it is natural to start with a minimal set of mirrored characteristics of a person (like the EHR - Electronic Health Record) and then expand it once more data become available, like the sequencing of the genome, data streamed from wearables … As more data become available more intelligence can be derived from the DT (and embedded in the DT). This foster more usage and in turns stimulate the quest for better mirroring.

The third extension involves the use of the DT outside of the company boundaries to span over the value chain. The last two years crises on components availability and on value chain is fostering the industry interest on ways to have more flexibility in sourcing and in logistics. Value chains have pursued efficiency, optimisation, achieving impressive results. However, this has led to much rigidity and a glitch can disrupt the whole system.

The adoption of Digital Twins across the value chain and the extension of DT to interact across it can provide data to feed AI software designed to explore work around and keep the value chain working at high efficiency despite issues. Machine learning can turn historic data into probability forecast of future occurrences and alternative strategies can be designed and implemented as needed.

Furthermore this attention to the value chain is having an impact in the set up of clusters of digital twins. Several DTs, mirroring different “segments” of the value chain and owned by different parties can be clustered into a super DT mirroring the whole value chain (as an abstract entity). There are several issues to be faced (such as ownership and data sharing). Also, this trend towards the creation of a super DT goes in the opposite direction to the one of self orchestrating autonomous DTs (these are better in terms of ownership, since this
remains separate and no agreement is needed across the value chain). Logistic companies prefer the super DT approach (since it provides great control and it can be defined precisely) whilst industry on the value chain (users of logistics) may prefer the second approach -more ecosystem orientated- since it provides greater flexibility.

The fourth extension is possibly the most disrupting one. It brings the Digital Twin into the business space. A global mega trend in industry is the one towards servitization of products. This is sustained by the Digital Transformation that by shifting assets and operation to the cyberspace makes possible to create services out of assets and assets management. Additionally, we are seeing the softwarization of products, i.e. the embedding of software to provide features and functionality. The software can reside in the physical product or can be in the cyberspace (cloud, edge cloud and even devices /ambient cloud). The Digital Twin can be used to provide the features and functions (DT at stage 4 and beyond).

So far companies have not engaged Digital Twins to deliver additional functionality, with few exceptions. One of the reason is that DTs are born, in industry, at the production level whilst biz plans are developed at sales and strategy level. In the future we can expect a significant extension of DTs into that level.

4.1 Manufacturing Leads

The Manufacturing industry has been the first to adopt the technology of Digital Twins. No surprise since the use of CAD for product design and for the shop floor design is rooted in the last century. It was a simple, natural, step to take the digital model produced by CAD and use it for simulation, then for steering digital lathes and then robots to manufacture the various components and assemble them into the finished product. As IoTs became part of the toolkit and started to be disseminated in the shop floor supporting monitoring, control, operation and maintenance and then became embedded in the product it was a small step to associate all those data to the digital model giving rise to the digital twin.

As the DT is being used in more extensive ways it is evolving, as previously discussed, and manufacturing is still in the lead. As shown in Figure 18, DTs are becoming autonomous (represented with a double circle) and smarter, both thanks to access to external intelligence and to embedded intelligence. What is notable is the evolution of the “external intelligence”. Whilst it used to be an intelligence provided by a specific application running on a platform (in the factory or in the cloud) in the future we are going to se swarm intelligence taking up, that is the intelligence that is emerging as result of the interaction of several entities (more or less intelligent on their own. Swarm intelligence does not require, per sé, intelligent entities as long as there are many of them, think about bees and ants…).

Robotic Process Automation will be relying more and more on this type of swarm intelligence (given the limited number of robots involved, each of them needs to have some degree of local intelligence). Logistic chain (including smart warehouse and smart receiving dispatching docks tied to internal factory processes) will also start to benefit from this kind of swarm intelligence.

On the shop floor, the advent of co-bots, robots that can cooperate with people, is also paving the way towards a cooperation among PDTs and robots DTs. In perspective we could foresee that only the PDT of an expert technicians will be needed in the virtual space of the shop floor to interact with the robots DTs as needed. Connection with the DTs using Augmented and Virtual Reality is also being driven by the manufacturing world and this will also be an initial step into the industrial metaverse.
4.2 Fostering and Inheriting

The widespread adoption in the manufacturing industry has fostered adoption in other segments as shown in Figure 19.

Healthcare has been adopting DTs soon after manufacturing thanks, mostly to GE that had adopted DT technology in its turbine manufacturing and has a Health Division. More recently GE created a GE Digital that is further leveraging on the DT concept. In Health sector the extension of a DT to a PDT, to mirror a person’s characteristic was a natural step. At industry level, health has probably been the first to extend DT to people and it is still leading. Interestingly, we are starting to see, as an evolution of the concept of PDT study on Owned PDT, that is a PDT that is owned by the person. It might seem an obvious point, actually one might even wonder why a PDT shouldn’t be owned by the person that it mirrors digitally but as a matter of fact it requires a conceptual leap and a corresponding technology leap.

Today, DTs (and PDTs) are developed by industry (or companies in other sectors) and their development, operation and management requires specific skills and tools that are beyond a single person. In the coming years I would expect to see a new biz coming up to democratise the creation and use of PDTs but we are not there yet. I would also expect, once we reach that point, that companies will be willing to create a PDT, based on the data relevant to them, and then offer its ownership to the person, as today companies may create my profile and then offer and interface to manage it. Regulatory framework (in line of GDPR) might actually impose this kind of opening.

Clearly, a company created PDT will mimic a very small “slice” of me, like my entertainment tastes, or my travel record, my health record, my working experience (in a specific company), … and so on. Once the concept of OPDT will be established and socialised I would expect to see tools supporting the aggregation of those several PDTs mirroring parts of me into a single one, MyPDT. At that point I will be in command of my PDT, I will be able to nurture and grow it, to decide how it can interact with the world, …

As shown in the graphic the Cognitive Digital Twin is derived from industry (IBM 2018) and it is now being considered in the framework of education and knowledge assets management. A CDT related to a person (we can have CDT related to a company,
organisation, institution…) is also a PDT (or it may considered the part of the PDT mirroring the knowledge space of that person).

What we are starting to see, and it will become ever more important in the coming years, is the interaction among PDTs and DTs, represented by the first arrow in the graphic. On the shop floor we are going to see that the interaction among workers and tools (robots) is mirrored in the cyberspace as interaction among their respective (P)DTs.

A future step, represented in the graphic by the second arrow (dark blue), is to have the knowledge of a person embedded and made accessible through that person’s owned PDT. The accessibility can be asynchronous from the person, i.e. it can occur in the cyberspace in an autonomous way. A knowledge worker may “rent” her OPDT to a company to apply her knowledge to a situation. Clearly there would be a monitoring of the interaction with a related valorisation (i.e. that person will get some revenue out of it).

There is more, and this opens up a number of issues. Who is accountable for those interactions? One would tend to say that the person that harvest the revenue is also accountable for the interaction… However, it is more complex than it might seem. The executable knowledge that is provided (this is what we provide when we are involved in a work, not necessarily when we teach) depends on the owned knowledge as well as on the context where it will be executed, on the knowledge that is harvested in the environment (and the environment in the cyberspace is the whole world!) and on the algorithms that are being applied, locally and externally.

When we execute our knowledge the algorithm guiding it is our brain, and the execution capability is an important part of our capability. When we are in a digital context everything becomes fuzzier and complex. That is the reason why, as an example, it is an open question to decide on accountability for a self driving car (the owner? the car manufacturer? the software provider? the data provider? the sensors provider? …)

We have to face difficult answers but that shouldn’t be surprising since the questions are brand new!

4.3 Digital Transformation

The Digital Transformation -DX- is ongoing and, actually, it has been accelerated by the pandemic that forced many companies to move as much as possible of their activities to the cyberspace.

As shown in figure 20 below, Digital Twins are tools that support operation in the cyberspace for many entities and processes. Data resulting from the shift to the cyberspace create a model of the entity/process in the physical space and the stream of data provided by sensors supports the shadowing. In addition, all data are kept forming the thread. Hence, the three components making up a Digital Twin are available as result of the DX.

Does the DX require Digital Twins? No. Would the DX benefit from Digital Twins? Absolutely.

Digital Twins provide a structure to entities in the cyberspace and connect them to their counterpart in the physical space. They provide a “method” and a standard of operation, through encapsulation of entity. This is particularly important when we are dealing with data and want to preserve their ownership whilst at the same time we want to share them. Rather than sharing the value a Digital Twin makes possible to share its “meaning” through interactions. These interactions can be monitored and can be managed according to a framework. This applies to Digital Twins at stage 3 and beyond, particularly to those at stage
4 and beyond since at those stages Digital Twins offer functions and interactions with third parties (not those with the physical entity) are based on function activation.

One of the issue with shifting the physical to the “digital” is the loss of visibility. Seeing “bits” is not easy and most of the times it is meaningless. Here is where DTs come handy. They are a model and this model can be rendered, made visible in a meaningful way using Virtual Reality. This happens during the design phase, when the physical entity does not yet exist. Designers, even if they are scattered around the globe can look and interact with the design seeing what the physical entity will be like and even experimenting with it. Maintenance crew can use the model to see “inside” an engine, to try out ways of fixing a problem. Actually, an exciting application of Digital Twins and virtual reality is in the area of Surgery where surgeons can practice with the digital model of the patient trying different approaches to a surgery.

It is not just supporting through virtual reality the access to the cyberspace. It is also the possibility to use the Digital Twin to connect the cyberspace with the physical space through Augmented Reality. In this case the Digital Twin can steer the rendering of data entity in a different physical ambient.
5. Bringing it all Together

The future of Digital Twins remains to be written, although what is going on now and what is going to happen in the coming 2-3 years is pretty straightforward.

DTs are a reality in manufacturing and their use will further expand to cover more equipment and processes. The association of a DT to products will keep growing. Whilst the DT used “inside” the factory are focussing on higher efficiency and flexibility, those associated to a product are considered tools to get data from operation. These are used to fine-tune production, smooth operation and support pro-active maintenance. In the next few years companies will learn to leverage on these DTs to offer services and generate additional revenue streams.

What is happening in the manufacturing area is spreading to several other areas, like construction, healthcare, insurance, finance and banking, retail, entertainment and education.

Healthcare is steering the creation and the evolution of personal digital twins, and these will soon percolate in other areas as well.

The step from DT to PDT is not easy, mostly because the “P” brings along ethical and societal issues. Besides, Personal today refers not to the ownership, rather to what is mirrored, a person’s set of characteristics. By the end of this decade I am pretty sure that the “P” will be associated with the ownership. Whatever mirrors a person need to be owned by that person.

The extension of DT and PDT to CDT -Cognitive Digital Twin- is in synch with the growing demand of managing knowledge. This is a need for both the single person that is going to compete on the market more and more on the executable knowledge available and at company level since knowledge is more and more a tool of the trade.

Cognitive Digital Twins offer the hope of capturing and delivering executable knowledge. Here again, as with the “P” in PDTs, the “C” gives rise to new and yet to be explored ethical and societal issues.

The Digital Transformation is transforming much more than the way of doing business. Is transforming the perception of values, it has societal implications. It is a transformation into a life in the metaverse, a Digital Reality where people no longer perceive a separation between the physical and the cyberspace and where business, companies, needs to reach a market that is both in the cyber and in the physical space.

Figure 21. We can expect with a reasonable confidence that the future will see a Digital Reality, both for Biz and each one of us, a reality where physical and cyber space will overlap and where from a perceptual point of view the boundaries between the two will tend to fade away. Companies will have to operate in both spaces to reach customers that will “live” in both spaces.
Advances in AR and VR, that will change the rules of the game once effective interfaces will become available (seamless and affordable), will further blur the separation of physical and cyber on the one hand and on the other hand will make possible to live in both at the same time.

As shown in the graphic, both companies and customers/users will operate in the meta verse, a space where the boundaries between the atoms and the bits are fuzzy. DT and PDT will bridge these two spaces. In addition DTs and (p)PDT (partial PDT) will become products on themselves. Tools will be available to let people buy DT and (p)PDT creating their own PDT, a real alter ego in the cyberspace able to interact on their behalf with physical entities, people included, in the physical space.

These latter evolutions are still very much in the future, and may not happen any time soon as they will need to go hand in hand with evolution in many other areas, including AI, AR/VR transducers, cultural/societal acceptance and regulatory framework.
6. Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>APM</td>
<td>Assets Performance Management</td>
</tr>
<tr>
<td>AR</td>
<td>Augmented Reality</td>
</tr>
<tr>
<td>AWS</td>
<td>Amazon Web Services</td>
</tr>
<tr>
<td>BIM</td>
<td>Building Information Modelling</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>CAM</td>
<td>Computer Aided Manufacturing</td>
</tr>
<tr>
<td>CDT</td>
<td>Cognitive Digital Twin</td>
</tr>
<tr>
<td>DT</td>
<td>Digital Twin</td>
</tr>
<tr>
<td>DX</td>
<td>Digital Transformation</td>
</tr>
<tr>
<td>EHR</td>
<td>Electronic Data Record</td>
</tr>
<tr>
<td>GDPR</td>
<td>General Data Protection Regulation</td>
</tr>
<tr>
<td>GE</td>
<td>General Electrics</td>
</tr>
<tr>
<td>IA</td>
<td>Intelligence Augmentation</td>
</tr>
<tr>
<td>ML</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>PPDT</td>
<td>Owned Personal Digital Twin</td>
</tr>
<tr>
<td>PDT</td>
<td>Personal Digital Twin</td>
</tr>
<tr>
<td>PhT</td>
<td>Physical Twin</td>
</tr>
<tr>
<td>PLM</td>
<td>Product Life Cycle Management</td>
</tr>
<tr>
<td>STM</td>
<td>ST Microelectronics</td>
</tr>
<tr>
<td>VR</td>
<td>Virtual Reality</td>
</tr>
</tbody>
</table>